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We consider the pricing problem faced by a retailer endowed with a finite inventory of a product o↵ered over a

finite planning horizon in an environment where customers are price-sensitive. The parameters of the product

demand curve are fixed but unknown to the seller who only has at his disposal a history of sales data. We

propose an adaptive optimization approach to setting prices that captures the ability of the seller to exploit

information gained as a byproduct of pricing in his quest to maximize revenues. We construct data-driven

uncertainty sets that encode the beliefs of the retailer about the demand curve parameters. We capture the

ability of the retailer to explore the characteristics of customer behavior by allowing the uncertainty set to

depend on the pricing decisions. We model his capacity to exploit the information dynamically acquired by

letting the pricing decisions adapt to the history of observations. These modeling features enable us to unify

optimization and estimation as the uncertainty set is updated “on-the-fly”, during optimization. We propose

a hierarchical approximation scheme for the resulting adaptive optimization problem with decision-dependent

uncertainty set which yields a practically tractable mixed-binary conic optimization problem. We discuss

several variants and extensions of our model that illustrate the versatility of the proposed method. We present

computational results that show that the proposed policies: (a) yield higher profits compared to commonly

used policies, (b) nearly match perfect information results with respect to downside measures such as the

Conditional Value-at-Risk, and (c) can be obtained in modest computational time for large-scale problems.

Key words : dynamic pricing, learning-earning, exploration-exploitation, decision rule, adjustable robust

optimization, decision-dependent uncertainty set, generalized semi-infinite programming.
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1. Introduction

Dynamic pricing is a business strategy concerned with periodically adjusting the prices of products

to reflect changes in circumstances in an environment where customers are price-sensitive and with

aim to maximize long-term profitability. Common events that justify an adjustment in selling price

of a product include changes in market conditions, increase or depletion of inventory or resources

(supply availability), modifications in customer demand behavior (due to e.g., the selling-season,

the introduction of complement products), or increase in knowledge about the demand response.

Dynamic pricing policies have been long-employed in the travel, hospitality, and energy sectors

(where short-term capacity is rigid) to mitigate imbalances in supply and demand. The main reason

for the early adoption of dynamic pricing strategies in these industries was the ability to change

prices at low cost and in a centralized fashion (Elmaghraby and Keskinocak (2003)). In contrast,

in industries with more flexible supply, such as retail, imbalances between supply and demand

have traditionally been moderated by means of dynamic inventory control. While active inventory

management is a useful tool for increasing profit, it only serves to decrease costs. Dynamic pricing

on the other hand provides a means for also a↵ecting revenues provided the population to which the

product is o↵ered is price-sensitive. Unfortunately, high menu costs precluded such industries from

regularly adjusting their prices. The emergence of the internet as a sales channel and the increasing

use of digital price tags have drastically decreased such costs, while technological advances are by

and large permitting the automation of price changes. Dynamic pricing is thus becoming ubiquitous

across most industries, enabling retailers to leverage on both sides of the profit equation.

In this paper, we focus on a variant of the dynamic pricing problem, often referred to as the

tactical pricing problem, whereby a firm is endowed with a finite inventory of a single product

available for sale. Thus, our methodology is adequate for products with rigid capacity, short life-

cycle (relative to their procurement lead time) (e.g., holiday goods, fashion apparel, products

produced oversees), or for products at the end of their life-cycle. We discuss how our framework

extends to the dynamic pricing problem with inventory control, the multi-product pricing problem

with finite inventories and the network revenue management problem, among others.
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The need for modeling demand as an uncertain parameter was recognized very early (Mills

(1959)). Nevertheless, a critical assumption made by most academic studies incorporating uncer-

tainty is that the demand curve or demand function, which maps prices to expected demand, is

completely known by the firm. While it has the benefit of reducing the computational complexity

of the underlying problems (since the only source of uncertainty is that in the residual demand),

this assumption of full-information is unrealistic in most practical settings. Indeed, knowledge

of the characteristics of customer behavior for any given product is typically incomplete or even

lacking altogether. This is enhanced by the fact that over the last decades, product life-cycles

have decreased (Elmaghraby and Keskinocak (2003)) while new products constantly emerge in the

markets. Thus, it is natural to assume that the demand curve is unknown.

When the demand curve is unknown, the firm is faced with the trade-o↵ between exploitation

(pricing to maximize revenue) and exploration (demand learning). On the one hand, exploiting

available information increases short-term profitability. On the other hand, it may lead to high

opportunity costs in the long run. Indeed, in the context of revenue management, demand learning

occurs as a byproduct of pricing. Thus, in order to build an accurate model for the demand curve,

a retailer must experiment with di↵erent prices, invariably deviating from the myopic pricing

strategy which is optimal based on current information. Rothshield (1974) and McLennan (1984)

were the first to highlight the possibility of incomplete learning in dynamic pricing (building upon

the theory of multi-armed bandits originally proposed by Robbins (1951)). Recognizing that pricing

patterns impact their ability to learn the demand curve, retailers increasingly proceed with price

experimentation. While frequent price changes may damage the reputation of a firm, they may

prove crucial in determining the (asymptotically) optimal selling prices of products.

Beyond the computational complexities associated with the determination of a pricing strategy

that optimally balances between learning and earning, even the exploitation of information asso-

ciated with a simple myopic strategy requires data. Historically, this has hampered all but the

most technologically advanced firms (that had the ability to gather, store and analyze such data



Bertsimas and Vayanos: Data-driven learning in dynamic pricing
4 Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!)

sets) from learning customer behavior. In recent years, acknowledging that data can help them

take more informed decisions (and facilitated by a reduction in the costs of information technology

and the increased use of electronic transactions), most firms have started accumulating sales data.

Thus, it is believed that, in the coming years, most retailers will have the ability to dynamically

adjust their prices at low cost and integrating the latest data in their decision-taking.

In this context, firms are thus faced with two questions:

(a) How to build an accurate model of demand curve uncertainty from the available data?

(b) Given this model, how to determine (compute) a pricing strategy that optimally balances

between exploitation and exploration?

In this paper, we address both these questions in a unified fashion.

1.1. Literature review

Dynamic pricing in an uncertain environment has received considerable attention by researchers in

numerous areas ranging from operations research and management science to economics, computer

science and control. The focal point of this review is the recent literature on dynamic pricing with

learning in a parametric (stationary) monopolist environment. We also briefly discuss the literature

on robust dynamic pricing. For a survey of the research on dynamic pricing (without learning), we

refer the interested reader to the books by Talluri and van Ryzin (2004) and Phillips (2005), and

the review papers by Bitran and Caldentey (2003) and Elmaghraby and Keskinocak (2003).

Parametric models with Bayesian learning. The leading line of research on dynamic pricing

takes a Bayesian approach. Thus, a parametric model of the demand is postulated jointly with

a prior distribution that reflects the seller’s initial knowledge of the model parameters. Demand

observations are used to update the prior into a posterior through the application of Bayes’ rule.

The vast majority of studies cast in this framework assume that customers arrive according

to a homogeneous Poisson process with unknown rate (which can be partially resolved through

judicious pricing) and purchase the product with a known price-dependent probability (directly

associated with their willingness to pay), see Aviv and Pazgal (2005), Lin (2006), Araman and
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Caldentey (2009), Farias and van Roy (2010). Others assume that one of a finite number of models

is known to apply, see Harrison et al. (2012). The probability associated with the validity of each

model is then updated with additional sales observations. Unfortunately, these formulations do not

generally admit an analytic solution and problems of realistic size are computationally intractable.

Thus, researchers have resorted to the design and analysis of heuristics with attractive theoretical

properties. For example, Aviv and Pazgal (2005) propose a certainty equivalent heuristic, Araman

and Caldentey (2009) propose a greedy pricing heuristic, Farias and van Roy (2010) propose a

decay balancing heuristic, while Harrison et al. (2012) propose variants of myopic policies.

A common criticism of the Bayesian modeling paradigm is that, in order to obtain a posterior

of the same form as the prior, the prior distribution is artificially constrained to belong to a class

of distributions conjugate to the demand process, thus reducing modeling flexibility.

Parametric models and learning with classical estimation. A related line of research proposes to

model the demand curve as a fixed parametric function of the price, whose parameters are unknown

to the seller, and inference is made by e.g., least-squares or maximum-likelihood estimation. In

this context, the optimal pricing strategy can, in principle, be computed by dynamic programming

(following the principles of dual control theory, see e.g., Feldbaum (1961)). Unfortunately, this

methodology su↵ers from the curse of dimensionality while no closed-form solutions are available.

Thus, several researchers have resorted to approximations. Lobo and Boyd (2003) approximate

the value function in the dynamic program by linearizing the inverse of the covariance matrix of

the unknown parameters around the myopically optimal policy with “dithering”. Carvalho and

Puterman (2003, 2005a,b) propose a one-step look ahead policy which, at each step, chooses the

price that approximately maximizes the sum of the revenues in the next two periods. Bertsimas

and Perakis (2006) reduce the state space of the dynamic program by relying on the principles of

least-squares estimation and show that their methodology extends to competitive environments.

Others construct suboptimal policies that are shown to have desirable theoretical properties.

Besbes and Zeevi (2009) develop a parametric pricing policy based on maximum likelihood esti-

mation, establish lower bounds on the regret of any policy and show that their policies are close to
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this lower bound. Broder and Rusmevichientong (2012) propose maximum likelihood based policies

that cycle between explicit price experimentation and myopically optimal pricing policies. Harri-

son et al. (2013) develop variants of a greedy iterated least-squares policies which are shown to

be asymptotically optimal. Den Boer (2013c) proposes a variant of a certainty equivalent pricing

strategy and demonstrates that this policy yields convergence of the parameter estimates to their

true values. Den Boer (2013b) and den Boer and Zwart (2013) enhance the certainty equivalent

pricing policy with a “taboo interval” around the average of previously chosen prices and show

that with this type of policy, the value of the optimal price will be learned.

Robust approaches. Several authors have proposed to apply the robust optimization paradigm,

whereby the uncertain parameters are assumed to lie in an uncertainty set (see Ben-Tal et al.

(2009) and Bertsimas et al. (2011a)), to the dynamic pricing problem. The vast majority of this

research stream assumes that the demand model is perfectly known, see e.g., Thiele (2006, 2009),

Lobel and Perakis (2010), or time-varying and sequentially revealed at each stage, see e.g., Adida

and Perakis (2006, 2010). Thus, there is no opportunity for learning. A related line of study takes

the distributionally robust approach. In this setting, the seller is immunized against multiple priors

in the neighborhood of a given distribution, see e.g., Lim and Shanthikumar (2007) and Lim et al.

(2008). While these latter formulations incorporate model uncertainty, they do not capture the

learning ability of the retailer and may thus result in overly conservative solutions. An exception in

this line of research is the paper by Eren and Maglaras (2010), which assumes that demand is noise-

free so that the model will become fully known if the firm experiments with all feasible price points.

For a more in-depth review of the literature on dynamic pricing with learning, we refer to the

recent paper by den Boer (2013a).

1.2. Proposed approach and contributions

The goal of this paper is to present a data-driven and distribution-free paradigm for demand

learning in dynamic pricing. We postulate a parametric form for the demand curve but do not

assume that the residual demand comes from a specific distribution nor that this distribution is
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known to the retailer. Instead, we take the robust optimization view-point and merely require

that the residual demand be norm-bounded. This modeling paradigm enables us to construct

a meaningful prior uncertainty set for the demand curve parameters with even few historical

data points. We show that this set can naturally be updated into a posterior uncertainty set,

which progressively “shrinks” around the true demand curve parameters as more price-demand

pairs are observed. In particular, all of the sets constructed are guaranteed to contain the true

parameters, while prior and posterior uncertainty sets are of the same form, an attractive feature

as far as tractability is concerned. In order to capture the ability of the retailer to learn the

posterior uncertainty sets, we model his pricing decisions as functions of the history of observations.

Similarly, we capture his ability to explore the set of demand curve parameters by allowing the

set of price-demand pairs to depend on the pricing policy selected. This construction enables us

to unify optimization and (dynamic) estimation. The resulting dynamic pricing problem is an

adaptive optimization problem with policy-dependent uncertainty set. We propose a hierarchy of

approximation schemes inspired from techniques commonly used in robust optimization, which

results in a practically tractable formulation.

The main results and contributions of this paper are summarized below:

1. We propose a novel data-driven distribution-free paradigm for dynamic learning that uni-

fies optimization and estimation. We use techniques inspired from system identification to

construct data-driven uncertainty sets that learn the unknown parameters online during opti-

mization and compute adaptive policies that exploit the information acquired in real time.

2. Our methodological contributions are twofold:

(a) From a modeling perspective, we propose to capture the ability of the retailer to explore

the characteristics of customer behavior by allowing the uncertainty set to depend on the

pricing decisions. We model his capacity to exploit the information dynamically acquired

by letting the pricing decisions adapt to the history of observations. These modeling

features result in an adaptive optimization problem with policy-dependent uncertainty
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set. To the best of our knowledge, this is the first model of this type proposed in the

literature. It naturally captures the trade-o↵ between exploration and exploitation.

(b) From a solution standpoint, we propose a hierarchical inner approximation scheme for

adaptive optimization with policy-dependent uncertainty set. We demonstrate that under

this approximation, the dynamic pricing problem is equivalent to a mixed-binary conic

problem that is practically tractable. Moreover, we suggest numerous strategies that mit-

igate the loss of optimality of the approximation at low computational overhead. To the

best of our knowledge, this is the first solution approach proposed for this problem type.

3. We provide computational evidence that shows that the proposed policies: (a) yield higher

profits at modest computational expense compared to commonly used pricing strategies, and

(b) perform nearly as well as perfect information policies with respect to downside measures

such as the Conditional Value-at-Risk.

4. We discuss numerous variants and extensions of the basic model that incorporate multiple

products and inventory decisions, thus illustrating the versatility of the method. We emphasize

that both our proposed modeling paradigm and solution approach remain applicable outside

the realm of dynamic pricing.

The paper is organized as follows. The remainder of this section introduces the notation, while

Section 2 describes the pricing problem, the data, and the demand model under consideration. The

mathematical formulation of the problem is provided in Section 3. Section 4 gives insights into the

structure of the optimal pricing policies, and the proposed solution approach is detailed in Section 5.

Section 6 describes numerous extensions to the pricing problem to which our solution paradigm

remains applicable, while heuristic approaches commonly employed in practice are described in

Section 7. Finally, Section 8 reports on numerical results.

Notation. Throughout this paper, vectors (matrices) are denoted by boldface lowercase (upper-

case) letters. We let e denote a vector of all ones; its size will be clear from the context. For any

p 2 [1,1] and n 2 N, we denote the standard `p-norm in Rn by k · kp and the pth-order cone in

Rn+1 by Kn+1

p := {(x, t) 2 Rn+1 : kxkp  t}. For X ✓ Rn and Y ✓ Rm, we let YX denote the set of

all functions from X to Y. By convention, we define Y; ⌘Y.
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2. Problem description, historical data and demand dynamics

In this section, we describe the pricing problem that will be the central focus of the paper, the

demand model that will prevail in our exposition, and the mild assumptions on the historical data.

2.1. The (tactical) pricing problem

We consider the pricing problem faced by a firm, henceforth referred to as the seller, o↵ering a

single product over the finite planning horizon T := {1, . . . , T} in an environment where customers

are price-sensitive. The seller is endowed with a (fixed) finite inventory (capacity) c of the product.

At the beginning of each period t 2 T , he must choose a price pt 2 [l, u], 0 < l  u <1, for his

product. We refer to [l, u]T as the feasible price set. At the end of period t, the seller observes the

(price-sensitive) demand dt generated during period t and resulting in a revenue dtpt. Cumulative

demand generated during the planning horizon is allowed to exceed capacity at a cost b 2R
+

per

unit of the product (often termed backlogging or backorder cost in the inventory management

literature). Any inventory remaining at the end of the horizon must be held on the premises at

cost h 2R
+

per unit of the product (this is usually referred to as holding cost). Thus, for a given

price sequence and ensuing demand realization, the profit function of the seller is expressible as

X

t2T
dtpt �max

(
h

 
c�

X

t2T
dt

!
, b

 
X

t2T
dt � c

!)
. (1)

We remark that the requirement for the stage-wise feasible price sets [l, u] to be constant over the

planning horizon is non-restrictive and is merely introduced in order to simplify notation. In fact,

our approach remains applicable in the case when the vector of prices (p
1

, . . . , pT ) is restricted to

lie in a polyhedral set (possibly intersected with a discrete set). In particular, we are able to model

mark-up (pt+1

� pt), mark-down (pt+1

 pt) and absolute-deviation (|pt+1

�pt| ⇢) constraints that

commonly arise in practice.

2.2. Demand dynamics and historical data

We assume that, at the beginning of the planning horizon, the seller has at his disposal H price-

demand pair realizations. These may correspond to historical observations, the results of a market
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survey, etc. For notational convenience, and independently of how they were generated, we index

these observations by non-positive time t2H := {�H +1, . . . ,0}, thus viewing them as successive

historical realizations.

We assume that the demand for the product at time t2 T :=H[ T is given by a fixed function

of the price pt for that period corrupted by an additive error-term. We refer to T as the selling

horizon (nuance with the planning horizon T ). We focus on linear demand functions of the form

dt = ↵+�pt + ✏t 8t2 T . (2)

Thus, observed demand is the sum of two parts: a deterministic price-dependent part (↵+ �pt),

and a random component (✏t). Inspired from robust optimization, we assume that no statistical

knowledge of ✏t, t 2 T , is available and postulate that ✏ := (✏t)t2T is norm-bounded by a known

constant ⌘ 2 (0,+1), i.e.,

k✏kp  ⌘, (3)

for some p 2 {1,2,+1}. The intercept ↵ 2 R and slope � 2 R of the demand function in (2),

hereafter referred to as parameters of the demand curve, are chosen by “nature” when the product

is devised. Throughout the selling horizon, ↵ and � will likely remain unknown to the seller,

implying that the residual demand ✏t 2R, t 2 T , will be unobservable. The seller will nevertheless

be able to gain information (learn) about ↵ and � as a byproduct of his pricing decisions.

We now formalize our assumptions regarding the model and the data.

(A1) The postulated model (2)–(3) is valid over the feasible price set, with p and ⌘ known.

(A2) The set {(↵,�) 2 R2 : k(dt � ↵� �pt)t2Hkp  ⌘} is bounded and has non-empty interior,

i.e., there exist (↵̂, �̂)2R2 and ⇢> 0 such that k(dt � ↵̂� �̂pt)t2Hkp  ⌘� ⇢.

Several comments are in order. First, the restriction to linear demand curves may seem stringent.

Indeed, the demand curve for virtually any product is generally nonlinear, converging to zero for

large price values, does not take-on negative values and results in revenue functions ((↵+ �pt)pt)

spanning R
+

(see e.g., Talluri and van Ryzin (2004)). Nevertheless, in the context of the pricing
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problem set forth above, most firms typically only allow their prices to vary in a moderately sized

interval (constructed by taking into account competition, production costs, etc.) over which the

demand curve can be well approximated by a linear function. As we are only concerned with the

behavior of the demand function over this interval, we argue that a linear demand model is in fact

adequate. We note that linear demand models are extremely popular in the revenue management

literature due to their simplicity, see e.g., Mas-Colell et al. (1995) and Talluri and van Ryzin (2004).

We emphasize that by “model validity” in Assumption (A1), we do not necessarily mean that

the model is actually linear with norm-bounded uncertainty, but rather that no data will be seen

during the selling season which invalidates the model. Assumption (A1) implies that the set from

Assumption (A2) is non-empty. Second, the choice of norm p should be guided both by the data

(if su�cient samples are available) and the knowledge of the seller acquired from similar products.

As a guideline, we would recommend using a 2-norm for residual errors that resemble a truncated

normal and an 1-norm in other cases. Third, we note that obtaining an accurate bound ⌘ may be

challenging when little data is available. Nevertheless, we believe that it is easier to select a suitable

value for ⌘ rather than to estimate an entire distribution for the behavior of ✏. We note that a large

value of ⌘ will always guarantee the validity of the model but may slow down learning. Finally, we

argue that the requirement that the set in Assumption (A2) is bounded is non-restrictive since

prices are under the control of the seller: it can always be enforced by experimenting with at least

two distinct prices prior to the beginning of the planning horizon. We note that if this set has

empty interior, the seller knows the demand curve precisely, and there is no need for exploration.

Remark 1 (Prior information). The model discussed above readily extends to the case when

the seller has prior (data-independent) information on the possible set of values, ⇥
prior

✓R2, taken

on by (↵,�), with ⇥
prior

a pth-order cone representable set (see e.g., Ben-Tal et al. (2009) for a

definition). In such a case, it su�ces to augment the postulated model in assumption (A1) with

the requirement that (↵,�) 2⇥
prior

and relax assumption (A2) to require that the set {(↵,�) 2

⇥
prior

: k(dt � ↵� �pt)t2Hkp  ⌘} be compact. Thus, if ⇥
prior

is compact, no historical data is
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needed. Prior information generally available to the seller includes knowledge of the signs of the

demand curve parameters e.g., ↵> 0 and/or �  0.

Remark 2 (Extensions). The pricing problem discussed in this section may seem deceptively

simple. However, it possesses all the features necessary for us to describe our approach. We empha-

size that our methodology remains applicable for a far broader class of pricing problems, including

the classical newsvendor with pricing problem and the (multi-product) revenue management prob-

lem where demand may depend on current and even past prices of all products sold. It also naturally

extends to the case of strategic customers and to a setting where the demand curve is time-varying.

This is in sharp contrast to other dynamic pricing approaches which are tailored to a specific

problem class. Moreover, we note that the restriction to linear curves can be lifted. An overview

of these (and other) variants and extensions is provided in Section 6.

3. Pricing policies, set estimation and problem formulation

In the previous section, we described the problem faced by the seller, the demand dynamics and

data available. In this section, we formalize the distribution-free dynamic pricing problem mathe-

matically as an adaptive optimization problem with decision-dependent uncertainty set.

3.1. Information vector and pricing policies

The price for the product at time t 2 T is selected at the beginning of period t after the history

(p⌧ , d⌧ )
t�1

⌧=1

of price-demand pairs has been observed, but before future outcomes (p⌧ , d⌧ )⌧�t become

available. In order to capture the ability of the retailer to exploit the information available at each

stage, we model his pricing decisions as functions of the history of observations, and refer to this

sequence of functional variables as a pricing policy. Formally, a pricing policy corresponds to a

non-anticipative sequence ⇡ := (⇡
1

, . . . ,⇡T ), where each ⇡t, t 2 T , is a measurable function from

R2(t�1) to [l, u] that maps historical observations to admissible prices. We henceforth denote by ⇡t

the pricing policy for time t and by pt the price realization, i.e.,

pt = ⇡t(p1, d1, . . . , pt�1

, dt�1

) 8t2 T .
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We remark that since data prior to t= 1 is known, the pricing policy ⇡
1

is in fact a constant. We

define the set

N :=
Y

t2T
[l, u](R

2(t�1))

that corresponds to all non-anticipative pricing policies taking values in [l, u]T .

Remark 3 (Classical adaptive optimization). In classical adaptive optimization (see e.g.,

Ben-Tal et al. (2009) and Bertsimas et al. (2011a)), the decisions are modeled as functions of the

primitive exogenous uncertainties in the problem. This is either possible because these exogenous

uncertainties are directly observable (Ben-Tal et al. (2004)) or made possible by the so-called

“purified-output” approach (Ben-Tal et al. (2006)). This latter methodology infers the (informa-

tion generated by the) primitive uncertainties from an observable output that depends linearly on

the controls and the uncertainties. In the context of the dynamic pricing problem under consider-

ation, the residual demand (primitive uncertainty) is not observable and cannot be inferred from

the observed demand (since ↵ and � are unknown). This will prevent us from following classical

adaptive optimization approaches for solving the dynamic pricing problem with demand learning.

We now describe a methodology for constructing data-driven uncertainty sets for dynamic pricing

that adapt to the pricing decisions, thus enabling the seller to explore the demand curve.

3.2. Data-driven adaptive set estimation

Set estimation for the demand curve parameters. The model of uncertainty introduced in Sec-

tion 2.2 does not assume any statistical knowledge of the error. Under these circumstances, it is

natural to define a set of possible demand curve parameters. We propose to construct this prior

uncertainty set as the union of all estimates (↵,�) 2 R2 that are compatible with the model and

unfalsified by the historical data. This set has maximal “size” when residual errors for the future

(t� 1) are restricted to be equally zero and is representable as

⇥ :=
�
(↵,�)2R2 : dt = ↵+�pt + ✏t 8t2H, k(✏t)t2Hkp  ⌘

 
. (4)
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We emphasize that dt and pt in the representation (4) are historical data points, i.e., fixed values.

The set (4) thus corresponds to the set of all estimates for (↵,�) that are not invalidated from

the historical data (pt, dt)t2H, and the noise bound ⌘. We now present two examples of data-driven

uncertainty set constructions and discuss their relationships to the popular least-squares estimate.

Example 1 (Euclidean norm-bound error). When p= 2, the set in (4) is representable as a

single ellipsoid
8
>><

>>:
(↵,�)2R2 :

2

64
↵� ↵̂

�� �̂

3

75

>2

64
H

P
t2H pt

P
t2H pt

P
t2H p2t

3

75

2

64
↵� ↵̂

�� �̂

3

75 ⌘

9
>>=

>>;

centered at the least-square estimate

2

64
↵̂

�̂

3

75=

2

64
H

P
t2H pt

P
t2H pt

P
t2H p2t

3

75

�12

64

P
t2H dt

P
t2H ptdt

3

75

for (↵,�). Note that since there is some variability in the historical prices (and H � 2), see Assump-

tion (A2), the matrix 2

64
H

P
t2H pt

P
t2H pt

P
t2H p2t

3

75

has full rank and is thus invertible. The center and semi-axes of this ellipsoid coincide with those

of the ellipsoid arising as a confidence region from least-squares estimation. A concrete example of

such data-driven uncertainty set is shown on Figure 1.

Example 2 (Infinity norm-bound error). When p =1, the set in (4) is expressible as the

intersection of finitely many “stripes”

\

t2H
{(↵,�)2R2 : |dt �↵��pt| ⌘ 8t2H}.

The historical prices chosen determine the orientations of the stripes in (↵,�) space, while the real-

ized demands determine the locations of the stripes. The parameter ⌘ corresponds to the half-width

of the stripes. In accordance with our intuition, the larger the parameter ⌘, the greater the variabil-

ity of the residual error and the lesser the information provided by each historical measurement.



Bertsimas and Vayanos: Data-driven learning in dynamic pricing
Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!) 15

6.5 7 7.5 8 8.5 9 9.5 10 10.5
15

20

25

30

35

40

45

50

price

d
em

an
d

70 80 90 100 110 120 130 140 150
−13

−12

−11

−10

−9

−8

−7

−6

−5

−4

α

β

 

 
η=6

η=5

η=4

η=3

70 80 90 100 110 120 130 140 150
−13

−12

−11

−10

−9

−8

−7

−6

−5

−4

α

β

 

 
η=6

η=5

η=4

η=3

Figure 1 Companion figure for Examples 1 and 2. The figure on the left shows the true demand curve (↵ =

100, � = �8) and three historical price-demand pairs obtained by sampling the residual error from

the uniform distribution with support [�2,2]. The other two figures show the associated data-driven

uncertainty sets for the case when the Euclidean norm (middle) and infinity norm (right) of the error

is bounded by ⌘ varying from 3 to 6. The latter two figures were obtained using Yalmip, see Löfberg

(2004). As the two-norm of the sampled errors is less than 3, none of the sets are empty. The dot

and the asterisk on the two figures on the right denote the least-squares estimate of the demand curve

parameters and their true value, respectively.

As there is at least some variability in the historical prices (and H � 2), see Assumption (A2),

this set is bounded. We note that the least-square estimate does not necessarily lie in this set. A

concrete example of such data-driven uncertainty set is shown on Figure 1.

Adaptive set estimation for the price-demand realizations. In the absence of statistical assump-

tions on the residual error, we set out to construct a set of possible price-demand realizations for

the entire planning horizon. As the demand at each stage t2 T is an unknown function of the price

(which itself depends on historical observations), this uncertainty set is naturally policy-dependent.

To the best of our knowledge, uncertainty sets of this type have not previously appeared in the lit-

erature. Given a pricing policy ⇡ 2N and the uncertainty set (4) for the demand curve parameters,

the vector of price-demand realizations must be member of

U(⇡) :=

8
><

>:

(p
1

, . . . , pT , d1, . . . , dT )2R2T : dt = ↵+�pt + ✏t 8t2 T ,

pt = ⇡t(p1, d1, . . . , pt�1

, dt�1

) 8t2 T , k✏kp  ⌘

9
>=

>;
. (5)

Several comments are in order. First, part of the equality constraints defining the demand (t2H)

in the description of U(⇡) are decision independent: they only depend on the historical data
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(dt, pt)t2H. Second, the arguments of the set U(·) are pricing policies, i.e., functions. Thus, U(⇡)

maps adaptive decision variables to possible price-demand paths. By varying the prices chosen, the

seller is able to explore various regions of the uncertainty set by pruning out, “on-the-fly”, regions

that are not compatible with (would falsify) the observations. It is thus apparent that by allowing

the uncertainty set to adapt to the pricing decisions, we precisely capture the learning ability of the

decision-maker. We note that modeling exploration (adaptive uncertainty set) is only pertinent if

we also model exploitation (adaptive decision variables, see Section 3.1): if the seller cannot exploit

the information dynamically acquired, there can be no benefit in exploring.

From the representation (5), we observe that, for a fixed pricing policy ⇡, the posterior uncer-

tainty set for the demand curve parameters at stage t can be obtained as the projection of U(⇡)

onto the space of (↵,�) uncertainties for (p⌧ , d⌧ )
t�1

⌧=1

fixed to their realization. Thus, by observing

the price-demand realization up to the end of stage t�1, the retailer can fully characterize the pos-

terior uncertainty set. We note that similarly to the prior uncertainty set, the posterior uncertainty

set is pth-order cone representable. Moreover, it is always a subset of the prior uncertainty set.

Figure 2 illustrates, by means of an example, how the chosen pricing policy a↵ects the information

acquired and the “shape” of the posterior uncertainty set for (↵,�).

Remark 4 (Relationship to set membership estimators). The approach we have proposed

for constructing data-driven uncertainty sets for the demand curve parameters is identical to the set

membership estimators originally proposed in the late 1960s by Schweppe (1968) and Witsenhausen

(1968) in the systems identification literature (see also Milanese and Vicino (1991) and Giarré

et al. (1997)). Nevertheless, our proposal for constructing data-driven uncertainty sets for the

demand goes a significant step further as it extends the set membership construction into the future

(through decision-dependence) to capture the learning (exploration) ability of the decision-maker.

To the best of our knowledge, this has not been attempted in the literature.

3.3. Problem formulation: exploration/exploitation trade-o↵

In the previous section, we showed that, in the absence of distributional information, the exploration

ability of the decision-maker can be naturally modeled by allowing the set of possible price-demand
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Figure 2 Comparison of the posterior uncertainty sets for (↵,�) for two qualitatively di↵erent static pricing

policies. The figures on the left show the true demand curve (↵ = 20, � = �2), the historical price-

demand pairs (dots) and 15 future price-demand pairs (asterisks) for two di↵erent static pricing policies

(middle and bottom rows) for the same residual error realizations. The figures in the middle column

plot the prior uncertainty set (dark area) and the posterior uncertainty set (light area) built from

the price-demand realizations in the corresponding row. Note that the true demand curve parameter

pair (asterisk) is always contained in both the prior and posterior uncertainty sets. The figures on the

right illustrate the true demand curve (dark line) and one hundred demand curves (light lines) drawn

uniformly at random from the prior (top row) and posterior (middle and bottom row) uncertainty sets.

The two posterior uncertainty sets are qualitatively very di↵erent: In the first case (constant policy at

$3.75) the posterior uncertainty set is a thin stripe intersected with the prior set (a single point on the

demand curve is well identified); In the second case (uniform policy in the range [2.5,5]), the posterior

uncertainty set closely surrounds the true demand curve parameters (the demand curve as a whole is

well identified). Thus, depending on the variability of the policy chosen, the type of information acquired

and the associated posterior uncertainty sets obtained change substantially.
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realizations to adapt to the pricing policy. We also discussed that his exploitation capacity can

be captured by allowing the decisions to adapt to the history of observations. In this section, we

formulate mathematically the problem faced by the seller and show that it intrinsically captures

the trade-o↵ between exploration and exploitation.

Since the seller has no statistical knowledge on the residual demand distribution, but only deter-

ministic (bounded norm) information, it is natural that he be immunized against all possible

realizations of the price-demand pairs in the uncertainty set (5). We recall that this set corresponds

to all possible price-demand realizations given demand curve parameters compliant with the data

and a chosen price policy. Thus, the objective of the seller is to maximize the profit function (1)

in the worst-case realization of (p,d) := (p
1

, . . . , pT , d1, . . . , dT ), in the policy-dependent set U(⇡).

In mathematical terms, we write

maximize
⇡2N

infimum
(p,d)2U(⇡)

d>p�max
�
h
�
c� e>d

�
, b

�
e>d� c

� 
. (DP)

Problem DP inherently captures the trade-o↵ between exploration and exploitation. On the

one hand, by choosing a pricing policy that maximizes his immediate revenue (based on available

knowledge), the seller may not adequately prune-out regions of the membership set U(⇡), thus

incurring large opportunity losses in the future. On the other hand, by choosing prices with sole

aim to explore the membership set, significant short-term revenue losses may ensue that are not

counterbalanced by the possibility of future income. Note that the optimal objective value of DP

corresponds to the guaranteed profit of the seller.

4. Insights: when does the seller benefit from exploration?

In Section 3, we proposed a mathematical formulation for the distribution-free dynamic pricing

problem that incorporates learning of the unknown demand curve parameters. In this section, we

characterize cases when the seller does not benefit from exploration and show that in the general

setting, learning is in fact beneficial. For this purpose, we introduce the following definition.
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Definition 1 (Static pricing policy). A pricing policy ⇡= (⇡
1

,⇡
2

, . . . ,⇡T )2N is called static

if it satisfies

⇡t(p̂1, d̂1, . . . , p̂t�1

, d̂t�1

) = ⇡t(p̃1, d̃1, . . . , p̃t�1

, d̃t�1

)

for all (p̂
1

, d̂
1

, . . . , p̂t�1

, d̂t�1

) and (p̃
1

, d̃
1

, . . . , p̃t�1

, d̃t�1

) in R2(t�1) and for each t2 T \{1}.

From the formulation DP, it becomes apparent that exploration (demand learning) is beneficial

(improves the objective value of DP) if and only if there does not exist a static pricing strategy

that is optimal in DP. Indeed, if there exists a static pricing strategy that is optimal in DP,

exploring regions of the uncertainty set cannot help improve the objective value of DP since there

is no benefit in exploiting that information through adaptation. On the other hand, if there does

not exist an optimal static pricing strategy for DP, this implies that pruning out regions of the

uncertainty set that are incompatible with additional observations is necessary to improve the

objective of DP, so that exploration is imperative.

Remark 5 (Pareto efficiency). The existence of an optimal static pricing strategy for DP

does not necessarily mean that there may not be an adaptive pricing strategy that performs better

when scenarios other than the worst-case ones materialize (this is closely related to the idea of

Pareto e�ciency in classical robust optimization, see Iancu and Trichakis (2013)), neither does it

imply that there may not be an adaptive pricing strategy that more e�ciently prunes-out critical

regions of the uncertainty set. It only implies that in order to achieve the highest profit in the

worst-case realization of the uncertain parameters, there is no need to explore the uncertainty set.

We are now ready to investigate instances of Problem DP for which exploration is not beneficial.

4.1. A case when there is no benefit in exploration

The following proposition shows that when h= b= 0 (revenue maximization problem), the seller

does not benefit from exploration. A proof is provided in the Electronic Companion EC.1.
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Proposition 1 (No benefit in exploration when h= b= 0). Suppose that the holding and

backlogging costs are null (i.e., h= b= 0) and �  0 8(↵,�) 2⇥. Then, there exists a static pric-

ing policy which is optimal in DP. Moreover, such a pricing policy can be obtained by solving a

(classical) robust optimization problem.

4.2. In general, exploration is beneficial

In the previous section, we characterized instances of DP when exploration is not beneficial. We

now show that in the general setting, the seller can significantly benefit from demand learning. A

proof of the statement is provided in the Electronic Companion EC.2.

Proposition 2 (In general, exploration is beneficial). If the holding and overbooking costs

are not equally zero (h, b 6= 0), then there does not necessarily exist an optimal static pricing strategy

for the dynamic pricing problem DP, even if �  0 8(↵,�)2⇥.

5. Proposed solution approach

In Sections 2 and 3, we proposed a novel data-driven and distribution-free modeling paradigm

for demand learning in dynamic pricing that unifies optimization and estimation. The resulting

dynamic pricing problem DP constitutes an adaptive generalized semi-infinite optimization problem

that is severely computationally intractable. First, it possesses a large number of time-periods:

indeed, despite a persistent reduction of product life-cycles, most products still have shelf lives

spanning several months with pricing decisions taken daily. Second, it optimizes over functional

decisions. Finally, it possesses, once expressed in epigraph form, an infinite number of constraints

enforced over decision-dependent sets. In Section 4, we demonstrated that exploration is generally

imperative, implying that it is necessary for the seller to optimize over adaptive policies. In this

section, we propose two successive approximations that reduce the sizes of the information and

decision spaces while preserving the ability of the seller to adapt, and show that the resulting

problem can be formulated as a mixed-binary conic program.
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5.1. Approximations

Stage aggregation. Problem DP presents a large number of time-periods, translating to a large

number of observable uncertain parameters. As a first step to achieve computational tractability,

we propose to reduce the information space in the problem by drastically decreasing the number

of observable uncertainties. To mitigate the loss of optimality incurred by this approximation, we

will judiciously construct a new vector of observable uncertainties as a function of the primitive

uncertainties (p
1

, d
1

, . . . , pT , dT ) that accurately summarizes the information dynamically acquired.

Concretely speaking, we propose to aggregate the time-periods in the problem, henceforth

referred to as micro-periods, to fewer macro-periods. We denote the set of macro-periods by M :=

{1, . . . ,M} and let Tm denote the set of all micro-periods in macro-period m 2 M. We require

that each Tm consists of consecutive time-periods and [m2MTm = T . We let bm := mint2Tm t and

em :=maxt2Tm t denote the first and last micro-periods in macro-period m, respectively. We define

T m := [m
µ=1

Tµ and T m
:=H [ T m. We assume that the price-demand pairs (pt, dt) are no longer

observed within each micro-period t2 T . Instead, we only observe, at the beginning of macro-period

m2M, certain functions of the history of observations (pt, dt)t2T m�1 that concisely summarize the

state of the retailer’s knowledge. We denote these observable uncertainties by ⇠m 2Rn⇠ and require

that they be the unique solutions to a system of equations of the form

Rm(p)⇠m = Wm(p)d+ rm(p),

for some matrices Rm(p)2Rn⇠⇥n⇠ , Wm(p)2Rn⇠⇥T and rm(p)2Rn⇠ . We refer to ⇠m as the reduced

information vector for macro period m. In order to ensure that ⇠m be observable at the beginning

of macro-period m, we require that Rm(p) be invertible for all p 2 [l, u]T , that Wm(p) have non-

zero entries in the first em�1

columns only and that Rm(p), Wm(p) and rm(p) all be constant in

the prices pbm , . . . , pT . Finally, we require that Rm(p) and Wm(p) be quadratic separable in their

arguments, thus being expressible as

Rm(p) =Rm +

em�1X

t=1

R1

m,tpt +R2

m,tp
2

t , Wm(p) =Wm +

em�1X

t=1

W 1

m,tpt +W 2

m,tp
2

t
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and

rm(p) = rm +

em�1X

t=1

r1

m,tpt + r2

m,tp
2

t

for some matrices Rm, R1

m,t, R
2

m,t 2 Rn⇠⇥n⇠ and Wm, W 1

m,t, W
2

m,t 2 Rn⇠⇥T and vectors rm, r1

m,t,

r2

m,t 2Rn⇠ , t2 Tm, m2M.

Remark 6. As will become clear later on, we can in fact relax this last assumption and let Rm(p),

Wm(p) and rm(p) be polynomial (not necessarily separable) in they arguments. As this assumption

does not influence the further derivations and simplifies notation, we enforce it here.

Example 3 (Least-squares estimates and cumulative demand). A natural choice for ⇠m

is to let (⇠m,1, ⇠m,2) denote the least-square estimates for (↵,�) as of the end of the last micro-period

in macro-period m� 1 and define ⇠m,3 as the cumulative demand incurred up until then. Thus,

⇠m := (⇠m,1, ⇠m,2, ⇠m,3) solves the system of equations

2

666664

|T m�1|
P

t2T m�1 pt 0

P
t2T m�1 pt

P
t2T m�1 p2t 0

0 0 1

3

777775

2

666664

⇠m,1

⇠m,2

⇠m,3

3

777775
=

2

666664

P
t2T m�1 dt

P
t2T m�1 ptdt

P
t2T m�1 dt

3

777775
.

We remark that Assumption (A2) implies that the matrix on the left above is invertible. This

definition of ⇠m thus satisfies all of the observability requirements.

Remark 7 (Impact of the reduction in information space). By observing the reduced

information vector at the beginning of each macro-period rather than observing the new price-

demand realizations each time they are made available, the seller can e↵ectively only compute an

outer approximation to the true posterior uncertainty set. This posterior uncertainty set is only

updated (inside the optimization) at the beginning of each macro-period rather that at each stage.

There is no incentive to change pricing strategy when no new information is revealed. We thus

propose to (adaptively) select, at the beginning of each macro-period, one of finitely many candidate

pricing strategies  2 K := {1, . . . ,K}, each of which takes on the value ⇡,t 2 [l, u] at time t 2

T . The pricing strategy selected at the beginning of macro-period m 2 M prevails throughout
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the macro-period. Concretely, we introduce for each m 2 M an adaptive vector of coe�cients

zm whose th element is 1 if and only if the th strategy is selected at the beginning of macro-

period m. We model zm as a non-anticipative measurable function from RMn⇠ to {0,1}K which

maps observable uncertainties ⇠ := (⇠
1

, . . . ,⇠M) to choices of pricing policies. We write the non-

anticipativity constraints explicitly as

zm(⇠) = zm(⇠
0) 8⇠, ⇠0 : Om⇠=Om⇠

0,

where Om is the projection operator which maps ⇠ to the portion of uncertain parameters that are

observable at the beginning of macro-period m, i.e., (⇠µ)mµ=1

. We require that only one candidate

strategy be chosen during each macro-period, i.e.,

e>zm(⇠) = 1 for all ⇠ 2RMn⇠ .

The price selected by the seller at time t2 T is then expressible as

⇡t(p1, d1, . . . , pt�1

, dt�1

) =⇡>
t zm(⇠) 8t2 Tm, m2M,

where ⇡t := (⇡t,)2K. We remark that the choice of candidate strategy at macro-periodm2M\{1}

is adaptive, whereas the choice of candidate strategy at macro-period m= 1 is a constant.

We now provide two examples of candidate strategies.

Example 4 (Constant pricing strategy). A natural choice for the candidate pricing strate-

gies is to let ⇡t, = ⇡ for some ⇡ 2 [l, u] and for all t2 T . Constant strategies have the drawback

that they do not favor exploration of the demand curve a whole. Instead, they yield significant

information on a specific point of the demand function. In terms of uncertainty set for the demand

curve parameters, entering the same price ⇡ during multiple micro-periods progressively reduces

the set of estimates to a line segment in (↵,�) space, with the slope of the line depending on the

chosen value ⇡. A significant advantage of constant strategies is that price adjustments become

infrequent (they occur at most at the beginning of each macro-period), thus moderating possible

customer discontent. They are commonly employed by retailers who periodically perform discounts

and must choose the best discount level to optimally balance exploration and exploitation (e.g.,

40% discount from full price versus 20% discount from full price).
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Example 5 (Randomized pricing strategy). Another possibility is to allow the seller to

choose among randomized pricing strategies whereby, for each 2K, ⇡t, is chosen at random from

a strategy dependent interval I ⇢ [l, u] (prior to optimization). Such strategies have the benefit

of promoting exploration of the uncertainty set for the parameters. Nevertheless, they may elevate

customer discontent due to the high frequency of price adjustments. Randomized strategies are

particularly suited to cases when each customer cannot view the prices o↵ered to other customers

(e.g., interest rate quotes, online travel and hospitality bookings, and online retail).

Remark 8 (Discrete prices). In most realistic settings, the admissible price set of the dynamic

pricing problem is discrete and finite. The proposed solution approach lends itself particularly well

to this case. In fact, in Section 8, we will investigate problems with discrete feasible price sets, as

we believe that this is the type of problem of interest to practitioners.

We are now ready to formulate a conservative approximation to DP following the proposed

reduction of the information space. It reads

maximize infimum
(p,d)2Ua

(z)
d>p�max

�
h
�
c� e>d

�
, b

�
e>d� c

� 

subject to zm 2 ({0,1}K)R
Mn⇠ 8m2M

zm(⇠) = zm(⇠0) 8⇠, ⇠0 2RMn⇠ : Om⇠=Om⇠0

e>zm(⇠) = 1 8⇠ 2RMn⇠

9
>>>=

>>>;
8m2M,

(ADP)

where

Ua(z) :=

8
>>><

>>>:

(p
1

, . . . , pT , d1, . . . , dT )2R2T : dt = ↵+�pt + ✏t 8t2 T , k✏kp  ⌘,

pt =⇡>
t zm(⇠) 8t2 Tm, Rm(p)⇠m =Wm(p)d+ rm(p) 8m2M

9
>>>=

>>>;
.

The pricing problem ADP arising from the time-period aggregation corresponds to an adaptive

optimization problem with decision-dependent uncertainty set which is solely a↵ected by binary

adaptive decision variables (the coe�cients of the candidate strategies). As we will typically be able

to choose MK ⌧ T and Mn⇠ ⌧ 2T , the stage aggregation significantly reduces both the number
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of adaptive decision variables and the number of observable uncertain parameters in the problem.

Both of these reductions come at a moderate increase in the size of the representation of the

uncertainty set. As we will see in the following section, the proposed reduction in the information

space is crucial to achieve computational tractability.

Decision rule approximation. The time-period aggregation approximation enabled us to sub-

stantially reduce the size of the dynamic pricing problem. The aggregated problem ADP is still

computationally intractable as it optimizes over binary adaptive (functional) decision variables

and possesses, once expressed in epigraph form, a continuum of constraints enforced over a policy-

dependent set. In this section, we propose to approximate these adaptive decision variables by

functions that are piecewise constant over a preselected partition of the uncertainty set, in the

spirit of Vayanos et al. (2011). In Section 5.3, we will propose several strategies for mitigating the

potential loss of optimality incurred from this approximation.

Remark 9 (Finite adaptability). Adaptive policies for (classical) two-stage robust mixed inte-

ger programs that do not necessitate a-priori partitioning of the uncertainty set have been proposed

by Bertsimas and Caramanis (2010) and Hanasusanto et al. (2014). These papers investigate the

so-called finite adaptability problem, wherein the decision maker pre-commits to a finite number

of second-stage policies today and implements the best of these policies once the uncertain param-

eters are revealed. This type of policies o↵ers a great deal of flexibility as the partitioning of the

uncertainty set is left to the optimization and can take on an arbitrary form. On the other hand, it

does not lend itself easily to our learning context where the uncertainty set is decision-dependent.

We believe that extending the finite adaptability approximation to mixed-integer robust problems

with decision-dependent uncertainty set is an interesting topic for future research.

Let ⌅ :=
QMn⇠

i=1

[⇠
i
, ⇠i]⇢ RMn⇠ denote any hyperrectangular set containing the projection of the

set
S

z2{0,1}MK Ua(z) onto the space of observable uncertainties ⇠, i.e., satisfying

⌅ �

8
>>>>><

>>>>>:

⇠ 2RMn⇠ : dt = ↵+�pt + ✏t 8t2 T , k✏kp  ⌘,

pt =⇡>
t zm 8t2 Tm, Rm(p)⇠m =Wm(p)d+ rm(p) 8m2M

zm 2 {0,1}K , e>zm = 1 8m2M

9
>>>>>=

>>>>>;

, (6)
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where z is here treated as a static variable left to the control of “nature”.

Remark 10 (Computing ⌅). The tightest hyperrectangle ⌅ satisfying (6) can be obtained by

solving 2Mn⇠ mixed-binary conic optimization problems (linear programs if p2 {1,+1}). Each of

these problems either maximizes or minimizes one of the elements of ⇠ subject to the constraints

defining the set in the right-hand-side of (6). The decision variables of this problem constitute in

all the uncertain parameters of the representation (6) (including the zm, m 2 M). The bilinear

terms in the formulation can be eliminated by replacing the pt, t 2 T , by their definition and

subsequently linearizing the products of binary and (bounded) real-valued variables using standard

big-M techniques.

We introduce a partition of ⌅ into hyperrectangles of the form

⌅s :=
�
⇠ 2⌅ : wi

si�1

 ⇠i < wi
si
, i= 1, . . . ,Mn⇠

 
, (7)

where s2 S :=
QMn⇠

i=1

{1, . . . , ri} and

wi
0

< wi
1

< · · · < wi
ri

for i= 1, . . . ,Mn⇠

represent ri+1 breakpoints along the axis of the ith observable uncertain parameter ⇠i. We approx-

imate the coe�cients of the candidate pricing strategies by functions that are piecewise constant

on the subsets ⌅s, s 2 S, and denote by zs
m 2 {0,1}K , m 2M, the vector value adopted by these

coe�cients on the sth subset. Thus,

zm(⇠) =
X

s2S
⌅s(⇠)z

s
m, (8)

and the coe�cients zs
m become the new decision variables in the problem. They must satisfy the

non-anticipativity constraints

zs
m = zs0

m for all s, s0 2 S such that Oms=Oms
0, m2M. (9)

For notational convenience, we define the block-diagonal matrix

P := blkdiag (P
1

, . . . ,PM) , with Pm :=


⇡bm ⇡bm+1

· · · ⇡em

�>
.



Bertsimas and Vayanos: Data-driven learning in dynamic pricing
Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!) 27

This enables us to compactly express the price vector on the sth subset as ps =Pzs. Following the

reduction in the decision space of the problem, a conservative approximation (lower bound) to the

aggregated dynamic pricing problem is expressible as

maximize min
s2S

infimum
d2Ua

s (zs
)

d>Pzs �max
�
h
�
c� e>d

�
, b

�
e>d� c

� 

subject to zs
m 2 {0,1}K , e>zs

m = 1 8m2M, s2 S

zs
m = zs0

m 8s, s0 2 S : Oms=Oms0, m2M,

(LADP)

where the uncertainty set for subset s2 S is expressible as

Ua

s (z) :=

8
>><

>>:

(d
1

, . . . , dT )2RT : dt = ↵+�pt + ✏t 8t2 T , k✏kp  ⌘,

pt =⇡>
t zm 8t2 Tm, Rm(p)⇠m =Wm(p)d+ rm(p), ⇠m 2 cl(⌅s) 8m2M

9
>>=

>>;
.

Note that we have here replaced the set ⌅s with its closure. This has left the formulation unchanged

since, for any fixed zs 2 {0,1}K and s 2 S, the function in the objective of LADP is continuous

in d. Problem LADP is a single-stage (static) robust optimization problem with decision-dependent

uncertainty set. This type of problem is known as generalized semi-infinite programming problem

in the literature, see e.g., Still (1999). It is generically severely computationally intractable. In the

next section, we propose a methodology for reformulating LADP as a mixed-binary conic problem.

5.2. Reformulation

Before proceeding with the reformulation of LADP as a mixed-binary conic program, we make the

following observations.

Observation 1. Fix z 2 {0,1}MK such that e>zm = 1 8m2M. Then, there exists an s2 S such

that Ua

s (z) has non-empty relative interior. Moreover, from Assumption (A2), it follows that Ua

s (z)

is bounded for all s2 S.

Observation 2. For any fixed z 2 {0,1}MK such that e>zm = 1 8m2M, the matrices Rm(Pz),

Wm(Pz) and rm(Pz) are linear in z. Indeed, for any fixed µ2M and t2 Tµ, we have (⇡>
t zµ)2 =

(⇡t �⇡t)>zµ, where � denotes the Hadamard operator.
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Observation 3. If we use the equality pt =⇡>z to eliminate the pt, t2 T , from the definition of

Ua

s , s2 S, then the uncertainty set for subset s is expressible as

Ua

s (z) =
�
d2RT : 9⇣ 2Rn⇣ , F (z)d+G(z)⇣ � gs, H⇣ ⌫Kp h

 
(10)

for some matrices F (z) 2 Rm1⇥nd , G(z) 2 Rm1⇥n⇣ , gs 2 Rm1 , H 2 Rm2⇥n⇣ and h 2 Rm2 , where

m
1

:= 2(H + T +2Mn⇠), m2

:=H + T +1 and n⇣ :=H + T +2+Mn⇠. Moreover, it follows from

Observation 2 that F (z) and G(z) are a�ne in their arguments, i.e., they are representable as

F (z) = F
0

+
P

i2I Fizi and G(z) = G
0

+
P

i2I Gizi, for some matrices Fi 2 Rm1⇥nd and Gi 2

Rm1⇥n⇣ , i2 {0}[ I, I := {1, . . . ,MK}.

The following proposition shows that LADP can be reformulated as a mixed-binary conic opti-

mization problem. The proof relies on techniques commonly employed in classical robust opti-

mization (see e.g., Ben-Tal et al. (2009) and Bertsimas et al. (2011a)) combined with well known

linearization techniques, see Electronic Companion EC.3. A similar reformulation approach is fol-

lowed by Hanasusanto et al. (2014) to solve two-stage robust optimization problems under the

finite-adaptability approximation approach, see Remark 9.

Proposition 3 (Conservative approximation to DP). Consider the following mixed-binary

conic optimization problem

maximize v

subject to v 2R, zs
m 2 {0,1}K , e>zs

m = 1 8m2M, s2 S

µs
1

, ⌫s
1

2Rm1
+

, µs
2

, ⌫s
2

2Km2
q .xs

i , y
s
i 2Rm1

+

8i2 I

g>
s µ

s
1

+h>µs
2

� v+hc, g>
s ⌫

s
1

+h>⌫s
2

� v� bc

F>
0

µs
1

+
P

i2I F
>
i xs

i =Pzs +he, G>
0

µs
1

+
P

i2I G
>
i x

s
i +H>µs

2

= 0

F>
0

⌫s
1

+
P

i2I F
>
i ys

i =Pzs � be, G>
0

ys
1

+
P

i2I G
>
i y

s
i +H>⌫s

2

= 0

xs
i µs

1

, xs
i Bzsi e, x

s
i �µs

1

�B(1� zsi )e

ys
i  ⌫s

1

, ys
i Bzsi e, y

s
i � ⌫s

1

�B(1� zsi )e

9
>=

>;
8i2 I

9
>>>>>>>>>>>>>>>>>=

>>>>>>>>>>>>>>>>>;

8s2 S

zs
m = zs0

m 8s, s0 2 S : Oms=Oms0, m2M,

(LADP 0)
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where q 2 [1,+1] is such that 1/p + 1/q = 1 and B corresponds to a suitably chosen “big-M”

constant. Then, LADP 0 is always feasible, and

1. If p2 [1,+1], then LADP 0 is a conservative approximation (lower bound) to LADP.

2. If p= 1 or p=+1, then LADP and LADP 0 are equivalent.

Proof. See Electronic Companion EC.3.

Problem LADP 0 is a mixed-binary conic problem that is solvable with o↵-the-shelf solvers. For

any fixed number of subsets |S| for the partition, its size remains polynomially bounded with the

number of macro-periodsM employed for the time-period aggregation and the number of candidate

strategies K. Nevertheless, if |S| is not fixed, then the size of the problem becomes exponential

in M . We note that the optimal solutions to problems with fewer subsets can be e�ciently used

to warm-start the solution to a problem with finer granularity of the partition. We will follow this

strategy in our numerical experiments, see Section 8.

5.3. Strategies for mitigating the loss of optimality

In the previous section, we proposed to aggregate the periods in the problem and to subsequently,

adaptively select, at the beginning of each macro-period, one of finitely many candidate pricing

strategies. Rather than allowing the coe�cients of the candidate strategies to adapt to the entire

history of observations, we restricted them to solely adapt to certain functions of the historical

price-demand pairs that concisely summarize the historical information. We then proposed to

approximate these adaptive coe�cients by functions that are piecewise constant over a preselected

partition of the set of observable uncertainties.

On the one hand and as noted in Section 5.1, the size of the resulting problem LADP 0 is

exponential in the number of macro-periods if |S| is not fixed. This implies that it is desirable to

keep |S| small. On the other hand, keeping |S| small may result in a significant loss of optimality,

see the proof of Proposition 2 and Section 8. In this section, we propose two strategies that enable

us to select partitions with small |S| while mitigating the loss of optimality of the approximation.

To the best of our knowledge, neither of these approaches has been proposed in the literature.
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Adaptive partition. A natural way to mitigate the conservatism of the proposed approach at

moderate computational expense is to model the breakpoints used for the partition (7) as decision

variables of the problem. Then, the uncertainty set (10) is not only allowed to depend on the

coe�cients of the candidate strategies on each subset but also on the breakpoints wi
si
2 R, i =

1, . . . ,Mn⇠, s2 S. In order to be able to reformulate the resulting problem as a mixed-binary conic

problem with the tools proposed in Section 5.2, we approximate these real-valued breakpoints by

wi
si
= ⇠

i
+(⇠i � ⇠

i
)

2

4
bX

b=1

2�byi
si,b

3

5 with yi
si,b

2 {0,1}, i= 1, . . . ,Mn⇠,

where b2N denotes the number of bits used to encode each breakpoint and yi
si,b

2 {0,1} correspond

to new (static) binary decision variables that a↵ect the uncertainty set. For fixed |S|, the size of

the problem resulting from the methodology proposed in Section 5.2 with the breakpoints treated

as decision variables is polynomial in b.

Lifted formulation. In the proposed decision rule approximation scheme, see Section 5.1, we par-

titioned the uncertainty set orthogonally to the axes of the observable uncertain parameters. This

is restrictive and may result in large optimality gaps, even for large values of |S|. We thus naturally

propose to augment the vector of observable uncertainties by uncertainties that are expressible

as linear functions of ⇠, and to subsequently partition orthogonally the “lifted” uncertainty set.

This is equivalent to partitioning the uncertainty set along arbitrary directions, and adds more

flexibility to the decision rule approximation.

6. Variants and Extensions

In this section, we discuss numerous variants and extensions to the basic model introduced in

Section 2.2 to which our solution approach and modeling paradigm remain applicable.

6.1. Demand model variants

Demand model with memory of past prices. Probably the most natural extension to the proposed

linear demand model is one where customers have memory of the past ` prices, whereby the demand

is expressible as dt = ↵+
P`

⌧=0

�⌧pt�⌧ + ✏t 8t2 T . The solution approach presented in Section 5.1

naturally extends to this demand curve variant.
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Polynomial demand curve model. As discussed in Section 2.2, a linear demand curve model may

be inadequate if the feasible price range [l, u] is large. The proposed solution approach is applicable

to the case of polynomial demand curve models of degree d 2 N of the form dt = ↵+
Pd

↵=1

�↵p
↵
t ,

since p↵t = (⇡>
t zm)↵ = [(⇡t �⇡t)↵]>zm, t2 Tm, is linear in zm, m2M.

Strategic customers. A possible criticism of the model provided in Section 2 is that it does not

account for the naturally strategic behavior of customers. Indeed, in reality, customers may be

willing to wait before purchasing a product, in anticipation of a drop in price. Our framework

can naturally capture this behavior by allowing the demand to also depend on future prices, i.e.,

dt = ↵ +
P`

⌧=0

�⌧pt+⌧ + ✏t 8t 2 T . In this way, we view customers as being able to anticipate

(forecast in fact) future price movements.

Time-varying demand curve parameters. Finally, our framework easily extends to the case of

a time-varying demand curve, where demand is expressible as dt = ↵t + �tpt + ✏t 8t 2 T , for

some parameters ↵t 2 R and �t 2 R that are unknown to the seller. In this context, the variabil-

ity of the parameters may be restricted by e.g., bounding the p-norm of the changes as follows:

k(↵t � ↵t�1

)t2T kp  ⌘↵ and k(�t � �t�1

)t2T kp  ⌘�, with ⌘↵, ⌘� > 0. For the stage-aggregation

approximation, one would then employ weighted least-squares estimates with weights decreasing

for data further in the past (thus forgetting information).

6.2. Inventory management with pricing

Newsboy problem with pricing and demand learning. The simplest extension of the dynamic

pricing problem discussed in this paper is the Newsboy problem with pricing. In this variant, the

capacity (inventory) c of the product is decided by the seller at the beginning of the planning

horizon. A production cost cp 2R
+

is incurred for each unit of the product ordered. Naturally, the

solution approach proposed applies to this variant. We remark that there is no need to encode c

in terms of binary variables as it does not a↵ect the uncertainty set.
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Dynamic inventory management with pricing. As discussed in Section 1, it is generally beneficial

for retailers to leverage on both sides of the profit equation by simultaneously controlling inven-

tories and prices to mitigate imbalances in supply and demand. It is thus natural to ask whether

the proposed framework extends to the dynamic pricing problem with inventory management. The

answer is positive. We consider an extension of the inventory planning problem presented in Bert-

simas et al. (2011b) that incorporates pricing decisions and demand learning and briefly discuss

the steps involved in applying our approach.

The model is as follows. At the beginning of each stage t 2 T , the retailer chooses the price

pt 2 [l, u] that will prevail during that period. Subsequently, he faces the price-sensitive demand dt

which is expressible in the form (2). The demand must be satisfied from the on-hand inventory

xt 2 R, which may be replenished by placing orders ut 2 R
+

with a supplier at a cost r 2 R
+

per

unit. We assume that ordering decisions take immediate e↵ect. The inventory dynamics are thus

xt = xt�1

+ut � dt�1

8t2 T . (11)

For a given price-demand path, the profit of the retailer is expressible as

X

t2T
ptdt � rut �max(hxt,�bxt).

When the parameters of the demand model are unknown, the ordering and inventory decisions (also

the pricing decisions) must be modeled as functions of the history of price-demand observations

(d⌧ , p⌧ )
t�1

⌧=1

, see Section 3.1. We let �t 2 (R)(R2(t�1)
) and �t 2 (R

+

)(R
2(t�1)

) denote the inventory and

ordering policies, respectively, i.e., xt = �t(p1, d1, . . . , pt�1

, dt�1

) and ut = �t(p1, d1, . . . , pt�1

, dt�1

).

In the absence of distributional assumptions, the set of possible realizations for the price-demand

path is representable as in (5).

In order to solve this variant of the pricing problem, we proceed in three steps. First, we eliminate

the �t variables using their expression, which follows from (11). Second, we proceed with the stage-

aggregation and decision rule approximations (note that �t does not need to be encoded in terms

of binary variables), whereby �m (the ordering decisions at the beginning of macro-period m) and
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coe�cients zm are modeled as non-anticipative piecewise linear and piecewise constant functions

of ⇠, respectively. Thus, in the spirit of Vayanos et al. (2011), vm is expressible as

�m(⇠) =
X

s2S
⌅s(⇠)(�

s
m)

>Om⇠,

for some vs
m 2Rmn⇠ , m2M, satisfying the non-anticipativity constraints

vs
m = vs0

m for all s,s0 2 S such that Oms=Oms
0,

while zm satisfies (8) and (9). These approximations result in a linear single-stage robust optimiza-

tion problem with decision-dependent uncertainty-set. The final step consists in reformulating this

problem as a mixed-binary conic problem, which is achieved using the techniques from Section 5.2.

6.3. Multi-product pricing

Network revenue management. In this variant, the seller o↵ers an array of I distinct products,

and is endowed with a finite collection of resources r 2 R := {1, . . . ,R}, each with (fixed) finite

capacity cr that are used to produce (or assemble) the products. At the beginning of each period

t2 T , the seller must choose prices pti 2 [l, u] for each product i in his product menu I := {1, . . . , I}.

Each unit of demand for product i consumes a quantity mri of resource r. At the end of the

planning horizon, the seller incurs holding or backlogging costs for each unit of under- or over-

used resource r. These are denoted by hr and br, respectively. Collecting the costs into vectors

h := {hr}r2R and b := {br}r2R, the profit function of the seller (for a given price sequence and

ensuing demand realization) is expressible as

X

t2T
d>
t pt �max

(
h>

 
c�M

X

t2T
dt

!
, b>

 
M

X

t2T
dt � c

!)
,

where dt := (dti)i2I , pt := (pti)i2I , and M 2RR⇥I is the incidence matrix which collects the quanti-

ties mri. A natural extension to our modeling paradigm can be obtained by assuming that a linear

demand model of the form dt =↵+Bpt+✏t 8t2 T prevails throughout the selling season, where

↵ 2 RI and B 2 RI⇥I are the demand curve parameters. In order to capture the ability of the
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decision maker to exploit information in this setting, we model his pricing decisions as functions of

the historical observations related to all products. Thus, the seller optimizes over a pricing policy

⇡ := (⇡
1

, . . . ,⇡T ), where each ⇡t, t 2 T , is a measurable function from R2I(t�1) to [l, u]I . Extend-

ing the solution approach is simple. We omit the derivation due to space limitations. Note that

the multi-product pricing problem with finite inventories is a special case of the network revenue

management problem and can thus be accommodated by our modeling and solution paradigms.

7. Heuristic solution approaches

In this section, we present dynamic pricing strategies commonly used in practice. In Section 8, we

will benchmark our proposed solution approach against these policies.

7.1. Certainty equivalent policies

The most common pricing strategies are the so-called certainty equivalent or greedy iterated least-

squares policies. In this framework, the retailer selects at each stage t2 T the price pt 2 [l, u] that

maximizes his profit in the “nominal” realization of the uncertain parameters based on current

knowledge. In our distribution-free paradigm, this corresponds to fixing (↵,�) to its least-squares

estimate (↵̂, �̂) calculated using the historical data (d⌧ , p⌧ )⌧2H and setting ✏t = 0 for all t2 T . Then,

an optimal price p
1

to charge in the first stage can be computed by solving

maximize
X

t2T
(â+ �̂pt)pt �max{h(c�

X

t2T
â+ �̂pt),�b(c�

X

t2T
â+ �̂pt)}

subject to pt 2 [l, u] 8t2 T .

(12)

Note that (12) is equivalent to a convex quadratic program if �̂  0, and to a mixed-binary linear

program if the feasible price set is discrete.

7.2. Myopic policies

Another class of policies employed in practice are so-called myopic or static pricing strategies, see

Section 4.1. In this framework, the seller updates his beliefs about the uncertain parameters and

subsequently implements the price that is optimal based on these beliefs, iteratively at each stage.
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Contrary to certainty equivalent policies (see Section 7.1), these explicitly account for uncertainty.

Nevertheless, they do not account for the fact that the seller will be able to adjust his future prices

based on the information dynamically acquired. In the distribution-free framework of this paper,

an optimal myopic price p
1

to charge in the first stage can be computed by solving the robust

optimization problem

max min
(↵,�,✏)2⇥

X

t2T
(↵+�pt + ✏t)pt �max

(
h

 
c�

X

t2T
↵+�pt + ✏t

!
,�b

 
c�

X

t2T
↵+�pt + ✏t

!)

s.t. pt 2 [l, u] 8t2 T ,

(13)

where

⇥ := {(↵,�,✏)2R2+T+H : dt = ↵+�pt + ✏t 8t2H, k✏kp  ⌘}. (14)

8. Numerical results

In this section, we benchmark our proposed methodology (adaptive policies) against the heuristics

commonly employed in practice (see Section 7) on two synthetic data sets. We begin by describing

the data sets under consideration and then address the following questions in turn:

(a) How does the relative guaranteed performance of adaptive and myopic policies change as the

design parameters of the policies are varied?

(b) What is the computational e↵ort (solver time) required to compute adaptive policies?

(c) What is the relative performance of adaptive, myopic and certainty equivalent policies? How

do each of these policies compare to a perfect information (anticipative) policy?

All computational experiments were run on a 2.66GHz Intel Core i7-920 processor machine with

24GB RAM and all optimization problems were solved with CPLEX 12.6.

8.1. Problem parameters and historical data sets

We consider two instances of the the dynamic pricing problem DP, which we denote by DP
1

and

DP
2

, respectively. The parameters of these instances are provided in Table 1. In both cases, the

seller has at his disposal four historical price-demand pairs. These are shown on Figure 3, together

with the associated data-driven uncertainty sets for (↵,�), constructed as discussed in Section 3.2.
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Table 1 Parameter values for the instances DP1 and DP2 of the dynamic pricing problem DP. The data in the

first row correspond to the true but unknown demand curve parameter values.

Parameter DP
1

DP
2

(↵,�) (20,�2) (21,�3)

P ($) {4,4.2,4.4,4.6,4.8,5} {2.5,3,3.5,4,4.5,5}
p 1 1
⌘ 1 3.25

T 30 30

c ($) 320 230

(h, b) ($) (15,23) (25,35)
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Figure 3 Historical price-demand observations and true (but unknown) demand curves (left) and prior data-

driven uncertainty sets for (↵,�) (right) for the problem instances DP1 (top) and DP2 (bottom). The

dot and the asterisk on the figures on the right denote the least-squares estimate of the demand curve

parameters and their true value, respectively

8.2. Performance of optimal adaptive policies in dependence of policy design parameters

We investigate the performance of our proposed policies relative to optimal myopic policies (see

Section 7.2) on the instance of the dynamic pricing problem DP
1

presented in Section 8.1. First, we

study the learning gain, which we define as the increase in guaranteed (worst-case) profits that can

be achieved by passing from myopic (i.e., static robust) policies to the proposed adaptive policies.

In particular, we investigate the impact of the adaptive policy design parameters (selected by the

retailer) on the learning gain. Second, we compare the performance of a computed adaptive policy

and an optimal myopic policy out-of-sample.
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Adaptive policies. For our numerical experiments, we consider adaptive pricing strategies that

depend on the least-squares estimates for (↵,�), the cumulative demand, and a linear function

of the least-squares estimates at each macro-period, see Example 3 and Section 5.3. Thus, at the

beginning of macro-period m, there are 4(m� 1) observable uncertain parameters and the total

number of observable uncertainties is 4(M �1)⌧ 2T . As prices are discrete, see Table 1, we choose

to consider only constant candidate pricing strategies, each equal to one of the six feasible prices,

i.e., K = 6. In other words, at the beginning of each macro-period, we select one of six constant

pricing strategies, see Section 5.1.

Impact of policy design parameters on learning gain. For the first set of experiments, we investi-

gate the learning gain in dependence of the policy design parameters (number of macro-periods M

and breakpoint configuration r= (1, . . . , r
4(M�1)

)). For each M 2 {1, . . . ,5} and for each breakpoint

configuration r= (1, . . . , r
4(M�1)

) such that |S| 6, we compute the optimal objective value of the

conservative approximation LADP 0 to the dynamic pricing problem, which we denote by Or,M . We

then record the learning gain (Or,M �O
m

)/O
m

, where O
m

denotes the optimal objective value of

the static robust pricing problem (13), equal to $412.03 in this instance. We visualize the learning

gain in dependence of solver time on Figure 4. From the figures, we observe that the learning gain

is negative ('�10%) when |S|= 1 and M  2. This is due to the stage aggregation. Indeed, the

myopic strategy adjusts prices at each micro-period t 2 T , while the adaptive strategies adjust

their prices infrequently (M ⌧ T times). Nevertheless, with M as small as 3 (i.e., by only adjusting

the pricing strategy three times within the planning horizon), we observe that all the points on

the e�cient frontier achieve a non-negative learning gain. This implies that even by adjusting the

prices infrequently, the seller can drastically increase his guaranteed profits by learning the demand

curve. In fact, by adjusting the prices four times (M = 4) during the planning horizon, the seller

can achieve a learning gain greater than 73%. Finally, we observe that the maximal learning gain

achieved (for |S|  6) for M = 4 is identical to the maximal learning gain achieved with M = 5,

indicating convergence of the stage aggregation approximation.
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Figure 4 Learning gain in dependence of solver time for instance DP1, for M varying from 1 to 5 and for all

breakpoint configurations with |S| 6. The filled line on each figure is the e�cient frontier: it connects

the markers associated with the problems that achieved the highest learning gain for a given time budget.

The square corresponds to the optimal myopic policy. The numbers next to the markers correspond to

the cardinality of S for the problems on the e�cient frontier. The problems with |S|> 1 were warm-

started with the solution to the associated problem with |S|= 1 (solver times are cumulative).
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Figure 5 Empirical profit distribution for the myopic policy (left) and for an optimal adaptive policy with M = 5

and |S| = 16 (middle) for the instance of the dynamic pricing problem DP1. The figure on the right

depicts the empirical distribution of the di↵erence in profits between the two policies (adaptive less

myopic). On each graph, the dotted lines on the left and right correspond to the minimum and mean

values of the associated series.
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Out-of-sample performance. For the second set of experiments, we compare the empirical profit

distributions associated with an optimal myopic policy and an optimal adaptive policy (M = 5 and

r = (2,1,1,1,1,1,1,1,1,2,2,2,1,1,1,1)). For this purpose, we compute a policy of each type, and

draw 1000 samples for (↵,�) and ✏ uniformly from the sets of parameters that are compatible with

the model and the historical data. For each sample, we implement each policy in turn, and record

the profit that the retailer would make by adjusting his prices as dictated by that policy. The profit

and loss distributions for these two policies and the distribution of the di↵erence in profits are all

shown on Figure 5. By following an adaptive rather than a myopic policy, the retailer is able to

increase his profits (over the sample) by over 31.5% in the worst-case and by over 9.2% on average.

At the same time, he is able to halve the standard deviation of his profits. Finally, we observe that

while the adaptive policy may yield up to $223 less than the myopic policy, it yields higher profits

with probability greater than 81.6%.

8.3. Computational e↵ort in dependence of policy design parameters

In this section, we review the results obtained in the experiments of Section 8.2 from the computa-

tional perspective. For this purpose, we recall that Figure 4 depicts the learning gain in dependence

of solver time for varying design parameters of the adaptive policies. From the figures, we observe

that all problems on the e�cient frontiers were solved in less than 10 seconds. In particular, a

learning gain of over 73% (maximal learning gain over all experiments) can be achieved in under 3

seconds of solver time (M = 4). We note that while the average solver times grow exponentially with

|S|, a small |S| (= 4) is su�cient to achieve a learning gain of over 67% (M = 4) with associated

solver time 0.6 seconds.

8.4. Relative performance of adaptive, myopic and certainty equivalent policies

In this section, we investigate the performance of our proposed adaptive policies relative to pricing

strategies commonly employed in practice (see Section 7) in a folding horizon setting on the instance

of the dynamic pricing problem DP
2

presented in Section 8.1. We also compare each of these

approaches to a perfect information (anticipative) policy.
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Thus, we draw 500 samples for (↵,�) and ✏ uniformly from the sets of parameters that are

compatible with the model and the historical data. For each sample, we compute the optimal

price sequence/policy today but implement the “here-and-now” price p
1

only. Subsequently, we

observe the resulting (price-dependent) demand faced by the retailer, update the inventory and the

retailer’s beliefs about the demand curve parameters, and decrement the length of the planning

horizon by one. Finally, we re-optimize and repeat this until the end of the planning horizon and

for each of myopic, certainty equivalent and adaptive policies (with design parameters M = 4 and

r= (1,1,1,1,1,1,1,1,1,2,2,2), and with ⇠ constructed as in the experiments from Section 8.2). We

record the profits earned for each sample and for each policy. For each sample, we also compute

and record the profits that would be earned by a perfect information policy (which knows at time

t= 1 both the true demand curve parameters and the entire sequence of residual error realizations).

We emphasize that this latter policy cannot be implemented in reality. Nevertheless, it provides

an upper bound on the performance of any non-anticipative pricing strategy. The results are

summarized in Table 2 and Figure 6.

From the table and the figures, we observe that the adaptive policy outperforms both the cer-

tainty equivalent and myopic policies in terms of all the reported statistics (average and tail per-

formance). The most significant improvements can be seen on the left tail side of the profit and

loss distribution. First, the worst-case loss can be decreased by over 76.6% (92.8%) by passing from

certainty equivalent (myopic) policies to adaptive strategies. Second, the 1% and 5% Value-at-Risk

(VaR) can both be drastically decreased by employing adaptive policies. For example, the 1% VaR

drops by over 54% (108%) when passing from certainty equivalent (myopic) to adaptive policies.

Finally, the Conditional VaR (CVaR) at levels 1% and 5% can be sharply increased by employing

adaptive policies. For example, the 1% CVaR can be increased by over 111.4% by employing adap-

tive rather than certainty equivalent policies. Moreover, we note that the 1% CVaR for myopic

policies is �$35.62 implying that if a retailer employing myopic policies earns less than $180.19,

he will, on average, lose $35.62. Regarding average performance, we observe that the expected
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Table 2 Statistics for the empirical profit distributions associated with a myopic policy, a certainty equivalent

policy, and for an optimal adaptive policy with M = 4 and |S|= 8 for the instance of the dynamic pricing

problem DP2 solved in a folding horizon fashion. Also, comparison with the performance of a perfect information

(anticipative) policy.

Myopic
Certainty
Equivalent

Adaptive
Perfect

Information

Minimum �158.11 �48.30 �11.29* �11.29
Mean 795.26 820.70 831.22* 905.82
Standard Deviation 181.90 171.07 154.16* 158.05
5% Value-at-Risk �378.10 �497.27 �594.33* �604.62
1% Value-at-Risk �180.19 �242.27 �375.51* �375.51
5% Conditional VaR 233.19 334.90 433.00* 435.98
1% Conditional VaR �35.62 61.15 129.33* 129.33
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Figure 6 Empirical profit distribution for a myopic policy (top left), a certainty equivalent policy (bottom left),

an optimal adaptive policy with M = 4 and |S|= 8 (top right), and for an optimal anticipative policy

(bottom right) for the instance of the dynamic pricing problem DP2 solved in a folding horizon fashion.

On each graph, the dotted lines correspond (from left to right) to the minimum, 1st and 5th percentiles,

and mean values of the associated series.

profits (over the sample) can be increased by 1.28% (4.52%) when passing from certainty equiv-

alent (myopic) policies to adaptive policies. Finally, we note that in this instance, the certainty

equivalent policy performed significantly better than the myopic policy (both in terms of average

and tail performance). This is not surprising: despite the fact that the myopic policy accounts for

uncertainty, it optimizes in view of worst-case scenarios and is not guaranteed to outperform the

certainty equivalent policy if scenarios other than the worst-case materialize, see Remark 5.
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From the table and the figures, it becomes apparent that the tail performance of the computed

adaptive policy is nearly identical to the tail performance of the perfect information policy. Indeed,

worst-case loss, 1% VaR, and 1% CVaR coincide exactly for these two policies. This implies that

the performance of the adaptive policy is near-optimal on the left tail (loss) side.

8.5. Conclusions from numerical experiments

We now summarize the insights we obtained from our numerical experiments:

(a) The learning gain (increase in guaranteed profits that can be achieved by employing adap-

tive rather than myopic policies) can be substantial (over 73% for the instance DP
1

). More-

over, adaptive policies perform significantly better than myopic policies out-of-sample (31.5%

increase in profits in the worst-case and 9.2% on average for DP
1

).

(b) A substantial learning gain can be achieved at modest computational expense (all problems

on e�cient frontier solved in less than 10 seconds; learning gain of over 67% in under 0.6

seconds of solver time in the case of DP
1

).

(c) Adaptive policies with even smallM and |S| can significantly outperform myopic and certainty

equivalent policies both on average (expected profit increase of over 1.28% for instance DP
2

)

and in particular in terms of tail performance (worst-case loss decrease greater than 76.6% and

1% VaR drop greater than 54%). In fact, adaptive policies perform nearly as well as perfect

information policies with respect to downside risk measures such as the VaR and CVaR.
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Proofs of Statements

EC.1. Proof of Proposition 1

Proof. A lower bound to the optimal objective value of DP can be obtained by restricting the

pricing policies to be constant. In that case, the demand dt in the objective of DP can be replaced

by its expression ↵+�pt + ✏t and the seller’s pricing problem (for h= b= 0) can be formulated as

maximize

(
minimum
(↵,�,✏)2⇥

X

t2T
(↵+�pt + ✏t)pt

���� pt 2 [l, u] 8t2 T
)
, (EC.1)

where ⇥ is defined as in (14). An upper bound to the optimal objective value of DP can be obtained

by inverting the order of the minimization and maximization in (EC.1), yielding

minimize

(
maximum
pt2[l,u], t2T

X

t2T
(↵+�pt + ✏t)pt

���� (↵,�,✏)2⇥

)
. (EC.2)

The function (p,↵,�,✏) 7!
P

t2T (↵+ �pt + ✏t)pt is linear in (↵,�,✏) for each p 2 [l, u]T and con-

cave in p for each (↵,�,✏) 2 ⇥ (since �  0 8(↵,�) 2 ⇥). Moreover, the sets [l, u]T and ⇥ are

convex. By the minimax theorem, we conclude that the optimal objective values of (EC.1) and

(EC.2) coincide. This in turn implies that the optimal objective value of DP remains unchanged

if one optimizes over static pricing strategies only. Moreover, any optimal solution to the robust

optimization problem (EC.1) is optimal in DP. This concludes the proof. ⇤

EC.2. Proof of Proposition 2

Proof. We proceed by means of an example. Consider an instance of the dynamic pricing

problem DP with T = 2, [l, u] = [6,10], c= 20, h= 5 and b= 15. Suppose that no historical data is

available to the retailer, who nevertheless has prior information (in the form of a box) on the set

of possible values for (↵,�), which are known to lie in the set

⇥
prior

= {(↵,�)2R2 : 20 ↵ 30, �2 � �1},
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see Remark 1. Moreover, the retailer knows that the vector of residual errors (✏
1

, ✏
2

) will be such

that max(|✏
1

|, |✏
2

|) 1. Thus, the uncertainty set for the price-demand realizations is expressible

as

U(⇡
1

,⇡
2

) =

8
><

>:

(p
1

, p
2

, d
1

, d
2

)2R4 : dt = ↵+�pt + ✏t 8t2 T ,

p
1

= ⇡
1

, p
2

= ⇡
2

(p
1

, d
1

), max(|✏
1

|, |✏
2

|) 1

9
>=

>;
.

An optimal static strategy for this instance of DP can be found by replacing the demand dt by

its expression ↵+ �pt + ✏t and writing the resulting problem in epigraph form by introducing the

auxiliary variable v. This yields

maximize v

subject to v 2R, pt 2 [l, u] 8t2 T

v
P

t2T pt(↵+�pt + ✏t)�h{c�
P

t2T (↵+�pt + ✏t)}

v
P

t2T pt(↵+�pt + ✏t)� b{
P

t2T (↵+�pt + ✏t)� c}

9
>=

>;
8(↵,�, ✏

1

, ✏
2

)2⇥,

(EC.3)

where

⇥= {(↵,�, ✏
1

, ✏
2

)2R4 : (↵,�)2⇥
prior

, max(|✏
1

|, |✏
2

|) 1}.

It can be shown that for any choice of (p
1

, p
2

)2 [l, u]2, the worst-case in the first constraint of (EC.3)

is attained when ↵, �, ✏
1

and ✏
2

are all at their lower bound. Similarly, it can be shown that the

worst-case in the second-constraint of (EC.3) is reached for ↵, �, ✏
1

and ✏
2

all fixed to their upper

bound. Thus, (EC.3) can be solved as a convex quadratic program (since �  0 8(↵,�) 2⇥
prior

).

Its optimal objective value is ṽ=�22, attained at p̃
1

= p̃
2

= 8.

We now proceed to construct an adaptive strategy with objective value greater than �22. Define

the adaptive strategy (⇡?
1

,⇡?
2

) through

⇡?
1

= 8 and ⇡?
2

(p
1

, d
1

) =

8
>>><

>>>:

p?
2,1 := 10 if d

1

� 13

p?
2,2 := 6 else.
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We note that the cut-o↵ value 13 corresponds to the value of the demand function at the Chebyshev

center of ⇥ when the chosen price is 8. The objective value of this instance of DP under the pricing

strategy (⇡?
1

,⇡?
2

) is given by the greatest value v 2R satisfying the inequalities

v
P

t2T p?t,s(↵+�p?t,s + ✏t)�h{c�
P

t2T (↵+�p?t,s + ✏t)}

v
P

t2T p?t,s(↵+�p?t,s + ✏t)� b{
P

t2T (↵+�p?t,s + ✏t)� c}

9
>=

>;
8(↵,�, ✏

1

, ✏
2

)2⇥s, s2 {1,2}

where p?
1,s = ⇡?

1

for s2 {1,2},

⇥
1

= {(↵,�, ✏
1

, ✏
2

)2⇥ : ↵+⇡?
1

�+ ✏
1

� 13} and ⇥
2

= {(↵,�, ✏
1

, ✏
2

)2⇥ : ↵+⇡?
1

�+ ✏
1

< 13}.

The infimum values of the right-hand-side in the first inequality above are 174 and 16 for s= 1 and

s = 2, respectively. Similarly, the infimum values of the right-hand-side in the second inequality

above are 34 and 38 for s= 1 and s= 2, respectively. Thus, the greatest value of v satisfying these

four inequalities is 16, implying that the adaptive pricing strategy (⇡?
1

,⇡?
2

) attains an objective

value greater than that of any static strategy. Thus, we have provided a simple, two-stage, instance

of DP in which exploration is imperative. In fact, under static pricing strategies, the product

appeared not to be profitable in the worst-case (negative objective value), whereas it is profitable

under dynamic pricing with learning. This concludes the proof. ⇤

EC.3. Proof of Proposition 3

Proof. We begin the proof by writing LADP in epigraph form

maximize v

subject to v 2R, zs
m 2 {0,1}K , e>zs

m = 1 8m2M, s2 S

v+hc�he>d d>Pzs

v� bc+ be>d d>Pzs

9
>=

>;
8d2 Ua

s (z
s), s2 S

zs
m = zs0

m 8s, s0 2 S : Oms=Oms0, m2M.

(EC.4)

We reformulate each generalized semi-infinite constraint in problem (EC.4) in turn. For any fixed

s2 S and z 2 {0,1}K , it holds that

v+hc�he>d d>Pz 8d2 Ua

s (z) , min
d2Ua

s (z)
(Pz+he)>d � v+hc (EC.5)
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The dual of the inner minimization problem on the right of the equivalence (EC.5) is given by

maximize
µ1,µ2

g>
s µ1

+h>µs
2

subject to µ
1

2Rm1
+

, µ
2

2Km2
q

F (z)>µ
1

=Pz+he

G(z)>µ
1

+H(z)>µ
2

= 0.

(EC.6)

From Observation 1, it follows that (EC.6) is feasible, since its feasible set is independent of s. We

now distinguish between the general case p2 [1,+1] and the particular setting p2 {1,+1}.

1. If p 2 [1,+1], then weak duality implies that the optimal objective value of the dual (EC.6)

is a lower bound for the optimal objective value of the primal, and

9µ
1

2Rm1
+

, µ
2

2Km2
q feasible in (EC.6) with g>

s µ1

+h>µs
2

� v+hc

) v+hc�he>d d>Pz 8d2 Ua

s (z).

2. If p2 {1,+1}, then strong linear programming duality (which applies since the dual is feasi-

ble) implies that

9µ
1

2Rm1
+

, µ
2

2Km2
q feasible in (EC.6) with g>

s µ1

+h>µs
2

� v+hc

, v+hc�he>d d>Pz 8d2 Ua

s (z).

Applying the same reasoning to each generalized semi-infinite constraint individually yields the

formulation

maximize v

subject to v 2R, zs
m 2 {0,1}K , e>zs

m = 1 8m2M, s2 S

zs
m = zs0

m 8s, s0 2 S : Oms=Oms0, m2M

µs
1

, ⌫s
1

2Rm1
+

, µs
2

, ⌫s
2

2Km2
q

g>
s µ

s
1

+h>µs
2

� v+hc, g>
s ⌫

s
1

+h>⌫s
2

� v� bc

F (zs)>µs
1

=Pzs +he, G(zs)>µs
1

+H>µs
2

= 0

F (zs)>⌫s
1

=Pzs � be, G(zs)>⌫s
1

+H>⌫s
2

= 0

9
>>>>>>>>>=

>>>>>>>>>;

8s2 S,

(EC.7)

which is equivalent to LADP if p2 {1,+1} or constitutes a conservative approximation, otherwise.
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Problem (EC.7) is a conic optimization problem involving products of binary and real-valued

variables. The remainder of the proof consists in linearizing the bilinear terms using standard big-

M techniques. Thus, for each s2 S and i2 {1, . . . ,MK}, we introduce the auxiliary variables xs
i ,

ys
i 2Rm1

+

satisfying

xs
i = zsi µ

s
1

, xs
i µs

1

, xs
i Bzsi e, and xs

i �µs
1

�B(1� zsi )e

ys
i = zsi ⌫

s
1

, ys
i  ⌫s

1

, ys
i Bzsi e, and ys

i � ⌫s
1

�B(1� zsi )e.

This yields the desired formulation and concludes the proof. ⇤


